Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Vaccine ; 41(19): 3047-3057, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2294362

ABSTRACT

Q fever is a highly infectious zoonosis caused by the Gram-negative bacterium Coxiella burnetii. The worldwide distribution of Q fever suggests a need for vaccines that are more efficacious, affordable, and does not induce severe adverse reactions in vaccine recipients with pre-existing immunity against Q fever. Potential Q fever vaccine antigens include lipopolysaccharide (LPS) and several C. burnetii surface proteins. Antibodies elicited by purified C. burnetii lipopolysaccharide (LPS) correlate with protection against Q fever, while antigens encoded by adenoviral vectored vaccines can induce cellular immune responses which aid clearing of intracellular pathogens. In the present study, the immunogenicity and the protection induced by adenoviral vectored constructs formulated with the addition of LPS were assessed. Multiple vaccine constructs encoding single or fusion antigens from C. burnetii were synthesised. The adenoviral vectored vaccine constructs alone elicited strong cellular immunity, but this response was not correlative with protection in mice. However, vaccination with LPS was significantly associated with lower weight loss post-bacterial challenge independent of co-administration with adenoviral vaccine constructs, supporting further vaccine development based on LPS.


Subject(s)
Adenovirus Vaccines , Coxiella burnetii , Q Fever , Animals , Mice , Coxiella burnetii/genetics , Q Fever/prevention & control , Lipopolysaccharides , Bacterial Vaccines/genetics , Vaccination , Immunization , Adenoviridae/genetics
3.
PLoS Pathog ; 18(7): e1010660, 2022 07.
Article in English | MEDLINE | ID: covidwho-1993526

ABSTRACT

Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91-120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection.


Subject(s)
Coxiella burnetii , Q Fever , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Humans , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Interaction Maps , Q Fever/metabolism , Vacuoles/metabolism
4.
Praxis (Bern 1994) ; 109(14): 1150-1152, 2020.
Article in German | MEDLINE | ID: covidwho-1375147

ABSTRACT

For Once Not Corona Virus - an Uncommon Cause of Fever and Hepatitis Abstract. Our case reports acute Q fever as uncommon cause of fever, typically accompanied by pneumonia and/or hepatitis. It is caused by Coxiella burnetii, a bacterium which is generally hosted by live stock and affects humans by inhaling aerosols of the animals' excrements. If detected, it may be treated effectively. It should be considered in patients living in a typical environment or with a typical history. The route of our patient's infection remains unclear since he plausibly denied contact with any animals.


Subject(s)
Coronavirus , Coxiella burnetii , Hepatitis , Pneumonia , Q Fever , Animals , Coronavirus Infections/diagnosis , Hepatitis/diagnosis , Humans , Male , Q Fever/diagnosis , Q Fever/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL